Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 5(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33004692

RESUMO

Posttranslational glutamylation/deglutamylation balance in tubulins influences dendritic maturation and neuronal survival of cerebellar Purkinje neurons (PNs). PNs and some additional neuronal types degenerate in several spontaneous, independently occurring Purkinje cell degeneration (pcd) mice featuring mutant neuronal nuclear protein induced by axotomy (Nna1), a deglutamylase gene. This defective deglutamylase allows glutamylases to form hyperglutamylated tubulins. In pcd, all PNs die during postnatal "adolescence." Neurons in some additional brain regions also die, mostly later than PNs. We show in laser capture microdissected single PNs, in cerebellar granule cell neuronal clusters, and in dissected hippocampus and substantia nigra that deglutamase mRNA and protein were virtually absent before pcd PNs degenerated, whereas glutaminase mRNA and protein remained normal. Hyperglutamylated microtubules and dimeric tubulins accumulated in pcd PNs and were involved in pcd PN death by glutamylase/deglutamylase imbalance. Importantly, treatment with a microtubule depolymerizer corrected the glutamylation/deglutamylation ratio, increasing PN survival. Further, before onset of neuronal death, pcd PNs displayed prominent basal polylisosomal masses rich in ER. We propose a "seesaw" metamorphic model summarizing mutant Nna1-induced tubulin hyperglutamylation, the pcd's PN phenotype, and report that the neuronal disorder involved ER stress, unfolded protein response, and protein synthesis inhibition preceding PN death by apoptosis/necroptosis.


Assuntos
Apoptose , Retículo Endoplasmático/patologia , Proteínas de Ligação ao GTP/fisiologia , Glutamina/química , Neurônios/patologia , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia , Tubulina (Proteína)/química , Animais , Retículo Endoplasmático/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Neurônios/metabolismo , Peptídeo Sintases , Fenótipo , Células de Purkinje/metabolismo
2.
Sci Rep ; 8(1): 3072, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449678

RESUMO

The cerebellum plays a key role in motor tasks, but its involvement in cognition is still being considered. Although there is an association of different psychiatric and cognitive disorders with cerebellar impairments, the lack of time-course studies has hindered the understanding of the involvement of cerebellum in cognitive and non-motor functions. Such association was here studied using the Purkinje Cell Degeneration mutant mouse, a model of selective and progressive cerebellar degeneration that lacks the cytosolic carboxypeptidase 1 (CCP1). The effects of the absence of this enzyme on the cerebellum of mutant mice were analyzed both in vitro and in vivo. These analyses were carried out longitudinally (throughout both the pre-neurodegenerative and neurodegenerative stages) and different motor and non-motor tests were performed. We demonstrate that the lack of CCP1 affects microtubule dynamics and flexibility, defects that contribute to the morphological alterations of the Purkinje cells (PCs), and to progressive cerebellar breakdown. Moreover, this degeneration led not only to motor defects but also to gradual cognitive impairments, directly related to the progression of cellular damage. Our findings confirm the cerebellar implication in non-motor tasks, where the formation of the healthy, typical PCs structure is necessary for normal cognitive and affective behavior.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Microtúbulos/fisiologia , Células de Purkinje/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia , Animais , Cerebelo/metabolismo , Cerebelo/fisiologia , Cognição/fisiologia , Transtornos Cognitivos/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Feminino , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/metabolismo , Transtornos Motores/genética , Células de Purkinje/fisiologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo
3.
FASEB J ; 24(6): 1813-23, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20061535

RESUMO

Purkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum. However, the major proteins detected on 2-D gel electrophoresis were present in mutant and wild-type mouse cortex and hypothalamus at comparable levels, and proteasome activity is normal in these brain regions of pcd mice, suggesting that the increase in cellular peptide levels in the pcd mice is due to reduced degradation of the peptides downstream of the proteasome. Both nondegenerating and degenerating regions of pcd mouse brain, but not wild-type mouse brain, show elevated autophagy, which can be triggered by a decrease in amino acid levels. Taken together with previous studies on CCP1/Nna1, these data suggest that CCP1/Nna1 plays a role in protein turnover by cleaving proteasome-generated peptides into amino acids and that decreased peptide turnover in the pcd mice leads to cell death.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia , Aminoácidos/metabolismo , Animais , Autofagia , Morte Celular , Eletroforese em Gel Bidimensional , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/metabolismo , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Res Microbiol ; 160(2): 117-24, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19063962

RESUMO

The study was focused on the role of the penicillin binding protein PBP4* of Bacillus subtilis during growth in high salinity rich media. Using pbpE-lacZ fusion, we found that transcription of the pbpE gene is induced in stationary phase and by increased salinity. This increase was also corroborated at the translation level for PBP4* by western blot. Furthermore, we showed that a strain harboring gene disruption in the structural gene (pbpE) for the PBP4* endopeptidase resulted in a salt-sensitive phenotype and increased sensitivity to cell envelope active antibiotics (vancomycin, penicillin and bacitracin). Since the pbpE gene seems to be part of a two-gene operon with racX, a racX::pRV300 mutant was obtained. This mutant behaved like the wild-type strain with respect to high salt. Electron microscopy showed that high salt and mutation of pbpE resulted in cell wall defects. Whole cells or purified peptidoglycan from WT cultures grown in high salt medium showed increased autolysis and susceptibility to mutanolysin. We demonstrate through zymogram analysis that PBP4* has murein hydrolyze activity. All these results support the hypothesis that peptidoglycan is modified in response to high salt and that PBP4* contributes to this modification.


Assuntos
Bacillus subtilis/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/fisiologia , Proteínas de Ligação às Penicilinas/fisiologia , Salinidade , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia , Antibacterianos/farmacologia , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/ultraestrutura , Bacitracina/farmacologia , Bacteriólise , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Microscopia Eletrônica de Transmissão , N-Acetil-Muramil-L-Alanina Amidase/deficiência , Penicilina G/farmacologia , Proteínas de Ligação às Penicilinas/deficiência , Peptidoglicano/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/deficiência , Transcrição Gênica , Vancomicina/farmacologia
5.
Vision Res ; 48(19): 1999-2005, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18602413

RESUMO

The Purkinje cell degeneration (pcd) mouse undergoes retinal photoreceptor degeneration and Purkinje cell loss. Nna1 is postulated to be the causal gene for pcd. We show that a BAC containing the Nna1 gene rescues retinal photoreceptor loss and Purkinje cell degeneration, confirming that Nna1 loss-of-function is responsible for these phenotypes. Mutation of the zinc-binding domain within the transgene destroyed its ability to rescue neuronal loss in pcd(5J) homozygous mice. In conclusion, Nna1 is required for survival of retinal photoreceptors and other neuron populations that degenerate in pcd mice. A functional zinc-binding domain is crucial for Nna1 to support neuron survival.


Assuntos
Ataxia Cerebelar/fisiopatologia , Proteínas de Ligação ao GTP/fisiologia , Células de Purkinje/patologia , Degeneração Retiniana/fisiopatologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia , Zinco/metabolismo , Sequência de Aminoácidos , Animais , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Genótipo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/métodos , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo
6.
Brain Res ; 1140: 26-40, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16942761

RESUMO

The spontaneous autosomal recessive mouse mutation, Purkinje cell degeneration (pcd), was first identified through its ataxic behavior. Since its discovery in the 1970s, the strain has undergone extensive investigation, although another quarter century elapsed until the mutant gene (agtpbp1 a.k.a. Nna1) underlying the pcd phenotype was identified. As Nna1 was initially discovered as a gene induced in motor neurons following axotomy the finding that its loss leads to selective neuronal degeneration points to a novel and unexpected common molecular mechanism contributing to the apparently opposing processes of degeneration and regeneration. The elucidation of this mechanism may of course have significant implications for an array of neurological disorders. Here we will first review the principle features of the pcd phenotype and then discuss the functional implications of more recent findings emanating from the characterization of Nna1, the protein that is lost in pcd. We also provide new data on the genetic dissection of the cell death pathways operative in pcd(3J) mice, proving that granule cell death and Purkinje cell death in these mice have distinct molecular bases. We also provide new information on the structure of mouse Nna1 as well as Nna1 protein levels in pcd(3J) mice.


Assuntos
Proteínas de Ligação ao GTP/genética , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Células de Purkinje/fisiologia , Regeneração/fisiologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Animais , Cerebelo/citologia , Proteínas de Ligação ao GTP/fisiologia , Camundongos , Camundongos Mutantes Neurológicos/anatomia & histologia , Camundongos Mutantes Neurológicos/fisiologia , Mutação , Células de Purkinje/citologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia
7.
FEMS Microbiol Lett ; 263(1): 61-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16958852

RESUMO

The penicillin-binding proteins (PBPs) catalyze the synthesis and modification of bacterial cell wall peptidoglycan. Although the biochemical activities of these proteins have been determined in Escherichia coli, the physiological roles of many PBPs remain enigmatic. Previous studies have cast doubt on the individual importance of the majority of PBPs during log phase growth. We show here that PBP1b is vital for competitive survival of E. coli during extended stationary phase, but the other nine PBPs studied are dispensable. Loss of PBP1b leads to the stationary phase-specific competition defective phenotype and causes cells to become more sensitive to osmotic stress. Additionally, we present evidence that this protein, as well as AmpC, may assist in cellular resistance to beta-lactam antibiotics.


Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Proteínas de Ligação às Penicilinas/fisiologia , Peptidoglicano Glicosiltransferase/fisiologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia , Proteínas de Bactérias/fisiologia , Meios de Cultivo Condicionados , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Mutação , Concentração Osmolar , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano Glicosiltransferase/genética , Fenótipo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Resistência beta-Lactâmica/fisiologia , beta-Lactamases/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...